Effects of Realistic First-Stage Turbine Endwall Features

نویسنده

  • Nicholas D. Cardwell
چکیده

The modern gas turbine engine requires innovative cooling techniques to protect its internal components from the harsh operating environment typically seen downstream of the combustor. Much research has been performed on the design of these cooling techniques thus allowing for combustion temperatures higher than the melting point of the parts within the turbine. As turbine inlet temperatures and efficiencies continue to increase, it becomes vitally important to correctly and realistically model all of the turbine’s external cooling features so as to provide the most accurate representation of the associated heat transfer to the metal surfaces. This study examines the effect of several realistic endwall features for a turbine vane endwall. The first study addresses the effects of a mid-passage gap, endwall misalignment, and roughness on endwall film-cooling. The second study focuses on the effect of varying the combustor-to-turbine gap width. Both studies were performed in a large-scale low speed wind tunnel with the same vane geometry. Geometric and flow parameters were varied and the variation in endwall cooling effectiveness was evaluated. Results from these studies show that realistic features, such as surface roughness, can reduce the effectiveness of endwall cooling designs while other realistic features, such as varying the combustor-to-turbine gap width, can significantly improve endwall cooling effectiveness. It was found that, for a given coolant mass flowrate, a narrow combustor-turbine gap width greatly increased the coverage area of the leaked coolant, even increasing adiabatic effectiveness upstream of the vane stagnation point. The turbine designer can also more efficiently utilize leaked coolant from the combustor-to-turbine gap by controlling endwall misalignment, thereby reducing the overall amount of filmcooling needed for the first stage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endwall Heat Transfer and Shear Stress for a Nozzle Guide Vane with Fillets and a Leakage Interface

Increasing the combustion temperatures in a gas turbine engine to achieve higher efficiency and power output also results in high heat loads to turbine components downstream of the combustor. The challenge of adequately cooling the nozzle guide vane directly downstream of the combustor is compounded by a complex vortical secondary flow at the junction of the endwall and the airfoil. This flow t...

متن کامل

Flow and Thermal Performance of a Gas Turbine Nozzle Guide Vane with a Leading Edge Fillet

Complex three-dimensional vortex flows develop at the junction of a gas turbine airfoil and its casing (endwall). These flows increase the transfer of heat from the combustion gases to the metal parts and contribute to reduced aerodynamic efficiency. Past studies have shown that the use of a large fillet at the airfoil-endwall junction can reduce or eliminate the endwall vortex flow pattern. To...

متن کامل

Flow and Thermal Performance of an Airfoil-endwall Fillet for a Gas Turbine Nozzle Guide Vane

Gas turbine engines are used in a variety of power generation applications, including providing thrust for the F-35 Lightning II Joint Strike Fighter, turning electrical generators in combined-cycle power plants, and powering the M1 Abrams Main Battle Tank. In the high-temperature region of the turbine section, a complex vortical (swirling) flow present near the junction of a turbine airfoil an...

متن کامل

Flow and Thermal Performance of a Leading Edge Endwall-airfoil Fillet for a Gas Turbine Nozzle Guide Vane

Gas turbine engines have a high power-to-weight ratio, making them ideal for generation of aircraft thrust, and can have excellent electrical power generation efficiencies when used in a combined cycle power plant. A complex vortical flow at the junction of the nozzle guide vane airfoil and its casing (endwall) in the turbine section tends to decrease aerodynamic efficiency and increase metal t...

متن کامل

Computation of heat transfer in a linear turbine cascade

The efficiency of a turbine increases in general with an increase of the temperature of the working gas. In modern turbines this gas temperature may well exceed the melting temperature of the metal walls (Harasgama, 1995). Locally high heat transfer can lead to an excessive temperature and high thermal stresses in the walls, causing an early fatigue of the high pressure turbine components. Thus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005